Cytotoxic Principles from Ventilago leiocarpa

Lie-Chwen Lin,* Cheng-J en Chou, and Yuh-Chi Kuo
National Research Institute of Chinese Medicine, Pettou, Taipei 112, Taiwan, Republic of China

Received November 30, 2000

Abstract

Three new anthraquinones, islandicin 4-methyl ether (1), 1,2,6-trihydroxy-7,8-dimethoxy-3-methylanthraquinone (2), and 2-hydroxyemodin 1-methyl ether (3) as well as two known triterpenoids [taraxerol (4), lupeol (5)], six anthraquinones [chrysophanol (6), islandicin (8), parietin (9), emodin (10), catenarin (11), skyrin (15)], a 2,3-dihydroflavonol [(+)-aromadendrin (12)], two benzisochromanquinones [ventiloquinone K (13) and ventiloquinone I (14)], and stigmasterol (7) were isolated from Ventilago leiocarpa. The cytotoxicity of these compounds to various tumor cell lines was evaluated, and compound 15 significantly suppressed growth of HeLa, Vero, K562, Raji, Wish, and Calu-1 tumor cell lines. With the exception of K562 cells, the proliferation of other tumor cell lines was inhibited by compounds $\mathbf{3}$ and $\mathbf{1 0}$.

Ventilago leiocarpa Benth. belongs to the Rhamnaceae family, which is a scandent glabrous shrub growing throughout the thickets at low and medium altitudes in Taiwan. ${ }^{1}$ It is used in Chinese folk medicine as an analgesic and for the treatment of rheumatism. ${ }^{2}$ Previous chemical studies ${ }^{3-7}$ of the genus Ventilago have shown the presence of a variety of anthraquinones, naphthoquinones, quinones, and benzisochromanquinones. In the course of our search for biologically active substances in nature, we found that the crude extract from the stems of V. Ieiocarpa possessed in vitro cytotoxicity to cancer cells. Since the bioactivity and chemical constituents of V . Ie ocarpa have not been studied, we investigated the chemical constituents of dried stems of this plant.

The ethanolic extract of the stems of V. Ieiocarpa was fractionated by solvent partition and separated by column chromatography to yield anthraquinones, benzisochromanquinones, 2,3-dihydroflavonol, and phytosterol. The structures of 4-15 have been established as taraxerol (4), ${ }^{8}$ leupol (5), ${ }^{9}$ chrysophanol (6), ${ }^{10}$ stigmasterol (7), islandicin (8), ${ }^{11}$ parietin (9), ${ }^{12}$ emodin (10), ${ }^{13}$ catenarin (11), (+)aromadendrin (12), ${ }^{14,15}$ ventiloquinone $K(13){ }^{3}$, ventiloquinone I (14), ${ }^{3}$ and skyrin (15), ${ }^{16}$ on the basis of spectral analyses and by comparison with reported data.

Compound $\mathbf{1}$ has the molecular formula $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$, which was confirmed by HREIMS. The IR spectrum shows absorption bands 1667 and $1620 \mathrm{~cm}^{-1}$, and its UV spectrum ($\lambda_{\max } 441 \mathrm{~nm}$) suggested a 1,8-dihydroxyanthraquinone structure. The ${ }^{1} \mathrm{H}$ NMR spectrum shows the presence of an aromatic methyl ($\delta 2.41$), two peri-hydroxyl protons (δ $12.06,12.51$), four aromatic protons (one singlet at $\delta 7.18$, and an ABC system at $\delta 7.27,7.68,7.81$), and a methoxyl group at δ 3.89. Acetylation of $\mathbf{1}$ with acetic anhydride/ pyridine afforded a diacetate (1a). The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1}$ showed similarities to those of islandicin, ${ }^{6}$ except for the presence of a methoxyl group. In the HMBC spectrum, the $\mathrm{C}-4$ signal at $\delta 153.8$ was correlated with resonances at δ $3.89\left(\mathrm{OCH}_{3}-4\right), 7.18(\mathrm{H}-2)$, and $2.41\left(\mathrm{CH}_{3}-3\right)$, and the signal at $\delta 126.9$ ($\mathrm{C}-2$) correlated with the $1-\mathrm{OH}$ signal ($\delta 12.51$) and $\mathrm{CH}_{3}-3(\delta 2.41)$, indicating that $\mathrm{C}-4$ was methoxylated. Therefore, compound $\mathbf{1}$ was identified as the new compound, islandicin 4-methyl ether.

Compound $\mathbf{2}$ has the molecular formula $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{7}$, which was confirmed by HREIMS. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$

[^0]

1: $\mathrm{R}_{1}=\mathrm{OMe} \mathrm{R}_{2}=\mathrm{H}$
6: $R_{1}=R_{2}=H$
8: $\mathrm{R}_{1}=\mathrm{OH} \mathrm{R}_{2}=\mathrm{H}$
9: $\mathrm{R}_{1}=\mathrm{OH} \mathrm{R}_{2}=\mathrm{OMe}$
10: $\mathrm{R}_{1}=\mathrm{H} \mathrm{R}_{2}=\mathrm{OH}$
11: $\mathrm{R}_{1}=\mathrm{OH} \mathrm{R}_{2}=\mathrm{OH}$

2: $\mathrm{R}_{1}=\mathrm{OH} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OMe}$
3: $\mathrm{R}_{1}=\mathrm{OMe} \mathrm{R} \mathrm{R}_{2}=\mathrm{HR}_{3}=\mathrm{OH}$

12

shows signals for an aromatic methyl ($\delta 2.35$), two methoxyl groups ($\delta 3.98,3.99$), two isolated aromatic protons ($\delta 7.55$ and 7.57), and three hydroxyl protons (one peri-OH at δ 13.32, and two free-OH at $\delta 8.92,9.63$), which were confirmed by formation of a triacetate derivative (2a). The HMBC spectrum revealed the three-bond coupling of C-9a ($\delta 116.3$) to $\mathrm{H}-4(\delta 7.55)$ and $\mathrm{OH}-1(\delta 13.32), \mathrm{C}-2(\delta 150.8)$ to $\mathrm{CH}_{3}-3(\delta 2.35)$ and $\mathrm{H}-4(\delta 7.55), \mathrm{C}-10(\delta 181.0)$ to $\mathrm{H}-4(\delta$ 7.55) and $\mathrm{H}-5$ ($\delta 7.57$), and $\mathrm{C}-7\left(\delta 147.3\right.$) to $\mathrm{OCH}_{3}-7(\delta 3.98)$ and $\mathrm{H}-5$ (δ 7.57), indicating compound 2 possessed a 1,2-dihydroxy-3-methylanthraquinone component. In the NOESY spectrum, no correlations were observed between

Table 1. Inhibitory Activity (\%) of Compounds 3, 10, and $\mathbf{1 5}$ on Various Tumor Cells Growth ${ }^{\text {a }}$

compound	dose ($\mu \mathrm{M}$)	cell line					
		Calu-1	HeLa	K562	Raji	Vero	Wish
3	100	93.8 ± 7.8	100 ± 8.8	34.1 ± 7.8	100 ± 6.8	85.9 ± 2.5	79.3 ± 5.6
	50	91.7 ± 5.4	49.9 ± 7.2	N.D.	100 ± 7.2	71.1 ± 3.1	56.0 ± 3.8
	25	71.0 ± 3.3	21.4 ± 2.9	N.D.	72.4 ± 6.3.	42.6 ± 2.8	-0.30 ± 3.2
	12.5	60.5 ± 6.8	1.3 ± 4.2	N.D.	71.7 ± 5.0	13.8 ± 3.2	-5.5 ± 2.9
	6.25	-4.8 ± 3.3	-22.3 ± 3.6	N.D.	63.7 ± 4.9	9.9 ± 4.0	-9.5 ± 5.1
$I C_{50}(\mu \mathrm{M})$		21.3 ± 5.0	50.0 ± 6.2	> 100	<6.25	32.5 ± 4.5	55.0 ± 6.4
10	100	100 ± 7.5	100 ± 5.3	29.5 ± 6.5	100 ± 6.5	69.1 ± 2.5	80.7 ± 4.5
	50	100 ± 6.8	100 ± 6.1	N.D.	47.2 ± 4.9	64.4 ± 4.1	63.3 ± 6.3
	25	100 ± 5.3	78.3 ± 3.8	N.D.	45.8 ± 6.1.	26.7 ± 3.8	61.9 ± 4.7
	12.5	60.6 ± 4.8	41.9 ± 3.5	N.D.	41.2 ± 3.7	13.7 ± 2.2	22.0 ± 5.5
	6.25	49.4 ± 3.3	24.7 ± 2.0	N.D.	0.30 ± 7.2	3.3 ± 1.5	8.7 ± 2.6
$\mathrm{IC}_{50}(\mu \mathrm{M})$		6.25 ± 2.9	15.6 ± 4.2	> 100	43.8 ± 7.3	40.0 ± 1.7	28.8 ± 1.9
15	50	100 ± 7.0	100 ± 5.6	100 ± 8.5	100 ± 6.7	100 ± 6.5	100 ± 6.8
	25	100 ± 5.3	100 ± 7.2	50.6 ± 4.7	82.1 ± 4.9	70.5 ± 7.3	60.0 ± 7.2
	12.5	24.9 ± 4.7	55.0 ± 1.2	33.5 ± 3.0	48.1 ± 8.1	34.8 ± 3.9	37.8 ± 4.5
	6.25	20.6 ± 3.0	27.0 ± 3.2	22.2 ± 5.5	36.8 ± 3.2	23.1 ± 4.3	23.4 ± 6.3
	3.125	15.5 ± 2.1	5.8 ± 1.8	29.7 ± 6.3	33.8 ± 5.0	19.9 ± 2.9	24.7 ± 2.9
$1 \mathrm{C}_{50}(\mu \mathrm{M})$		14.3 ± 2.5	11.3 ± 3.5	27.3 ± 5.0	12.3 ± 4.1	18.3 ± 2.6	21.3 ± 3.2

${ }^{\text {a }}$ The method is described in the Experimental Section. Each datum represents the mean of three independent experiments. N.D.: not determined.
the two methoxyl signals and the two aromatic protons, indi cating that the methoxyl groups are located at C-7 and C-8. Therefore, compound $\mathbf{2}$ was characterized as 1,2,6-trihydroxy-7,8-dimethoxy-3-methylanthraquinone.

Compound $\mathbf{3}$ has the molecular formula $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$, confirmed by HREIMS. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ shows signals for a methyl group ($\delta 2.29$), a methoxyl group (δ 3.80), and a peri-hydroxy group ($\delta 13.12$), an isolated aromatic proton ($\delta 7.79$), and two meta-coupled protons (δ 6.56 and 7.06). On acetylation, $\mathbf{3}$ also yielded a triacetate. In the HMBC spectrum, the $\mathrm{C}-10$ signal at $\delta 181.6$ was correlated with resonances at $\delta 7.79(\mathrm{H}-4)$ and $7.06(\mathrm{H}-5)$, the signal at $\delta 156.5$ ($\mathrm{C}-2$) correlated with the $\mathrm{CH}_{3}-3$ (δ 2.29) and $\mathrm{H}-4$ ($\delta 7.79$) signals, and the resonance at $\delta 147.9$ (C-1) correlated with the $\mathrm{OCH}_{3}-1$ ($\delta 3.80$) signal. These data suggested the presence of three hydroxyl groups located at C-2, C-6, and C-8 and the methoxyl group located at C-1. Therefore, compound $\mathbf{3}$ was identified as 2-hydroxyemodin 1-methyl ether.

All of the isolated compounds weretested against a panel of cancer cell lines according to established protocols. ${ }^{17}$ As shown in Table 1, compound 15 displayed cytotoxicity against all six tumor cell lines, while compounds $\mathbf{3}$ and $\mathbf{1 0}$ significantly suppressed the growth of Vero, Wish, Calu1, Raji, and HeLa tumor cells. All other test compounds had IC_{50} values higher than $100 \mu \mathrm{M}$ against all cell lines. These results suggest that the 1,3,8-trihydroxy for the anthraquinone plays a significant role in the cytotoxic activity.

Experimental Section

General Experimental Procedures. Melting points were determined with a Yanagimoto micro-melting point apparatus and are uncorrected. IR spectra were obtained as KBr pellets on a Nicolet Avatar 320 IR spectrometer. UV spectra were obtained on a Hitachi U-3200 spectrophotometer in MeOH. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and 2D NMR spectra were measured with a Varian Inova-500 spectrometer with deuterated solvent as internal standard. EIMS, HREIMS, and APCIMS were recorded on a Finnigan MAT 95S and Finnigan LCQ spectrometer, respectively.

Plant Material. The stems of Ventilago leiocarpa were collected at Shihting, Taipei, Taiwan, in October 1999. A voucher specimen (No. 195898) has been deposited in the herbarium of the Department of Botany of the National Taiwan University.

Extraction and Isolation. The stems of V. Ieiocarpa (8.5 kg) were extracted with $95 \% \mathrm{EtOH}(50 \mathrm{~L} \times 3$). The ethanolic extracts were combined and concentrated under vacuum to a volume of 1.5 L . The concentrated ethanol ic extract was then partitioned successively between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, followed by $\mathrm{n}-\mathrm{BuOH}$ (each $1 \mathrm{~L} \times 3$). The EtOAc extract (110 g) was subjected to silica gel column chromatography with a gradient of EtOAc in n-hexane, and 11 fractions were collected. Fraction $2(2.6 \mathrm{~g})$ was rechromatographed over silica gel (n -hexane) and further purified by preparative TLC (25% benzene/n-hexane) to give compounds $\mathbf{1}, \mathbf{4}, \mathbf{5}$, and $\mathbf{6}$. Fractions 4 and 5 were combined (1.7 g) and purified by Sephadex LH-20 (EtOAc) and silica gel column chromatography ($12-26 \mu \mathrm{~m}$, performed at pressure ~10 bar, 2\% EtOAc/n-hexane) to give 7, 8, and 9. A precipitate from fraction 7 was recrystallized with EtOAc/nhexane to give 10. The filtrate from fraction 7 was purified on a silica gel column (10% EtOAc/n-hexane) and Sephadex $\mathrm{LH}-20(\mathrm{MeOH})$ to yield 10 and 11. Fraction $10(6.9 \mathrm{~g})$ gave 2, 12, 13, 14, and 15 after repeated Sephadex LH-20 (MeOH, acetone) and silica gel column chromatography. Fraction 8 was further purified by silica gel column chromatography (40-63 $\mu \mathrm{m}$, performed at pressure ~ 10 bar, 10% EtOAc/benzene) to yield 3.

Islandicin 4-methyl ether (1): red needles (EtOAc/nhexane); mp184-186 ${ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 441$ (3.85), 287 (3.80), 251 (4.12), 227 (4.42) nm; IR (KBr) $v_{\text {max }} 3400(\mathrm{OH})$, 1667, $1620(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\right.$ 3), 3.89, (3H, s, OCH $3-4$), $7.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{H}-7), 7.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-6), 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{H}-5), 12.06(\mathrm{OH}-8), 12.51(\mathrm{OH}-1) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.2$ $\left(3-\mathrm{CH}_{3}\right), 61.0\left(4-\mathrm{OCH}_{3}\right), 114.0(\mathrm{C}-9 \mathrm{a}), 115.5(\mathrm{C}-8 \mathrm{a}), 120.0$ (C-5), 123.6 (C-7, 4a), 126.9 (C-2), 134.8 (C-10a), 137.1 (C-6), 146.6 (C-3), 153.8 (C-4), 159.6 (C-1), 162.0 (C-8), 181.4 (C-10), 192.3 (C-9); HMBC correlations, $\mathrm{C}-1 \rightarrow \mathrm{OH}-1, \mathrm{H}-2 ; \mathrm{C}-2 \rightarrow \mathrm{OH}-$ $1,3-\mathrm{CH}_{3} ; \mathrm{C}-4 \rightarrow 4-\mathrm{OCH}_{3}, \mathrm{H}-2,3-\mathrm{CH}_{3} ; \mathrm{C}-7 \rightarrow \mathrm{OH}-8, \mathrm{H}-5 ; \mathrm{C}-8 \rightarrow$ $\mathrm{OH}-8, \mathrm{H}-6 ; \mathrm{C}-8 \mathrm{a} \rightarrow \mathrm{OH}-8, \mathrm{H}-5, \mathrm{H}-7 ; \mathrm{C}-9 \mathrm{a} \rightarrow \mathrm{OH}-1, \mathrm{H}-2 ; \mathrm{C} 10 \rightarrow$ H-5; EIMS m/z 284 [M]+; HREIMS m/z 284.0696 [M] (calcd 284.0685 for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$).

Diacetate 1a. Acetylation of compound $1\left(\mathrm{AC}_{2} \mathrm{O} /\right.$ pyridine) gave 1a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right), 2.42,2.43$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), 3.93, (3H, s, $\mathrm{OCH}_{3}-4$), $7.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$, $7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-7), 7.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-6)$, $8.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-5)$; EIMS m/z $368[\mathrm{M}]^{+}, 326[\mathrm{M}-$ 42] ${ }^{+}, 284[\mathrm{M}-42 \times 2]^{+}$.

1,2,6-Trihydroxy-7,8-dimethoxy-3-methylanthraquinone (2): yellow needles (EtOAc/n-hexane); mp 271-273 ${ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 410(3.86), 313$ (4.14), 283 (4.57), 317 (4.13), 301 (4.17), 225 (4.24) nm; IR (KBr) $v_{\max } 3453$ (OH), 1630 ($\mathrm{C}=\mathrm{O}$), 1561, 1456, 1299, $1272 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right), 3.98,3.99$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2$), 7.55
($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $7.57(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 8.92,9.64(\mathrm{OH} \times 2), 13.33$ (OH-1); ${ }^{13} \mathrm{C}$ NMR (acetone-d 6) $\delta 16.3\left(3-\mathrm{CH}_{3}\right), 61.5,61.7\left(\mathrm{OCH}_{3}\right.$ $\times 2$), 111.9 (C-5), 116.3 (C-9a), 120.2 (C-8a), 122.4 (C-4), 124.3 (C-10a), 131.3 (C-3), 132.9 (C-4a), 147.3 (C-7), 150.4 (C-1), 150.8 (C-2), 156.6 (C-8), 157.4 (C-6), 181.0 (C-10), 188.8 (C-9); HMBC correlations, $\mathrm{C}-1 \rightarrow \mathrm{OH}-1 ; \mathrm{C}-2 \rightarrow 3-\mathrm{CH}_{3}, \mathrm{H}-4 ; \mathrm{C}-3 \rightarrow$ $3-\mathrm{CH}_{3}, \mathrm{OH}-2 ; \mathrm{C}-4 \rightarrow 3-\mathrm{CH}_{3} ; \mathrm{C}-6 \rightarrow \mathrm{H}-5 ; \mathrm{C}-7 \rightarrow 7-\mathrm{OCH}_{3}, \mathrm{H}-5 ;$ $\mathrm{C}-8 \rightarrow 8-\mathrm{OCH}_{3} ; \mathrm{C}-8 \mathrm{a} \rightarrow \mathrm{H}-5 ; \mathrm{C}-9 \mathrm{a} \rightarrow \mathrm{OH}-1, \mathrm{H}-4 ; \mathrm{C} 10 \rightarrow \mathrm{H}-4$, H-5; EIMS m/z $330[\mathrm{M}]^{+}$; HREIMS m/z $330.0736[\mathrm{M}]^{+}$(calcd 330.0740 for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{7}$).

Triacetate 2a. Acetylation of compound $\mathbf{2}\left(\mathrm{AC}_{2} \mathrm{O} /\right.$ pyridine) gave 2a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right), 2.38,2.39$, 2.48 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 3$), 3.94, 4.01, (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2$), $7.80(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$; EIMS m/z $456[\mathrm{M}]^{+}, 414$ [M - 42] ${ }^{+}, 372[\mathrm{M}-42 \times 2]^{+}, 330[\mathrm{M}-42 \times 3]^{+}$.

2-Hydroxyemodin 1-methyl ether (3): yellow needles (EtOAc/n-hexane); mp 292-294 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon)$ 393 (3.92), 311 (4.08), 284 (4.42), 228 (4.36) nm; IR (KBr) $v_{\text {max }}$ 3422 (OH), 1629 ($\mathrm{C}=\mathrm{O}$), 1582, 1455, 1377, 1314, $1267 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}\left(\mathrm{DMSO}_{6}\right) \delta 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right), 3.80,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}-1\right)$, 6.56 (1H, br s, H-7), 7.06 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5$), 7.79 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $10.30(\mathrm{OH}-2), 11.12(\mathrm{OH}-6), 13.12(\mathrm{OH}-8)$; ${ }^{13} \mathrm{C}\left(\mathrm{DMSO}_{6}\right) \delta$ $17.2\left(3-\mathrm{CH}_{3}\right), 61.9\left(1-\mathrm{OCH}_{3}\right), 107.8(\mathrm{C}-5), 108.1(\mathrm{C}-7), 111.0$ (C-8a), 124.4 (C-9a), 125.6 (C-4a), 126.7 (C-4), 132.6 (C-3), 135.3 (C-10a), 147.9 (C-1), 156.5 (C-2), 164.9 (C-6), 165.3 (C-8), 181.6 (C-10), 187.2 (C-9); HMBC correlations, C-1 \rightarrow $1-\mathrm{OCH}_{3} ; \mathrm{C}-2 \rightarrow 3-\mathrm{CH}_{3}, \mathrm{H}-4 ; \mathrm{C}-4 \rightarrow 3-\mathrm{CH}_{3} ; \mathrm{C}-5 \rightarrow \mathrm{H}-7 ; \mathrm{C}-8 \rightarrow$ $\mathrm{OH}-8, \mathrm{H}-7 ; \mathrm{C}-8 \mathrm{a} \rightarrow \mathrm{H}-5, \mathrm{H}-7, \mathrm{OH}-8 ; \mathrm{C} 10 \rightarrow \mathrm{H}-4, \mathrm{H}-5$; APCIMS m/z 301 [M + H] ${ }^{+}$; HREIMS m/z 300.0652 [M] (calcd 300.0634 for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$).

Triacetate 3a. Acetylation of compound 3 ($\mathrm{AC}_{2} \mathrm{O} /$ pyridine) gave 3a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right), 2.37$, 2.41, 2.47 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 3$), $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right.$), 7.98 (1H, s, H-4), 7.94 (1 H, br s, H-5), 7.25 (1 H, br s, H-7); EIMS $\mathrm{m} / \mathrm{z} 426[\mathrm{M}]^{+}, 384[\mathrm{M}-42]^{+}, 342[\mathrm{M}-42 \times 2]^{+}, 300[\mathrm{M}-$ $42 \times 3]^{+}$.

Cell Lines. The K562, Raji, Vero, Calu-1, HeLa, and Wish cell lines were utilized as target cells in the cytotoxic assay. K562 and Raji cells are erythroleukemia and EBV-transformed B cell lines, respectively (American Type Culture Collection, ATCC, Rockville, MD). They were cultured in RPMI-1640 medium (Hyclone, Logan, UT) containing 10% fetal calf serum (FCS, Gibco, Grand Island, NY), $100 \mathrm{u} / \mathrm{mL}$ penicillin, and 100 $\mu \mathrm{g} / \mathrm{mL}$ streptomycin. The Vero cell is a green monkey kidney tumor cell line (ATCC, Rockville, MD). The Wish cell is a transformed epithelial cell line, and the Calu-1 cell is a human
lung carcinoma cell line(ATCC, Rockville, MD). The HeLa cell is a human cervical carcinoma cell line (ATCC, Rockville, MD). The Vero, Wish, Calu-1, and HeL a cell lines were cultured in MEM medium containing 10% FCS, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and $100 \mathrm{u} / \mathrm{mL}$ penicillin. These cell lines were cultured at 37 ${ }^{\circ} \mathrm{C}$ in an atmosphere of humidified $5 \% \mathrm{CO}_{2}$.

Growth Inhibition Assay. Growth inhibition was assessed as described previously. ${ }^{17}$ Each tumor cell line was cultured with or without various concentrations of compound $\mathbf{3 , 1 0}$, or 15 for 3 days, after which [${ }^{3} \mathrm{H}$]-thymidine was added and incubation continued for 16 h before harvest. Radioactivity was determined by a scintillation counter, and inhibitory activity was calculated as the IC_{50} (inhibition of 50% cell proliferation).

Acknowledgment. We are grateful to the National Science Council, the Republic of China, for support of this research under Grant NSC 89-2113-M-077-006.

References and Notes

(1) Liu, Y. C.; Lu, F. Y.; Ou, C. H.; Wang, C. M. In Flora of Taiwan, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, 1993; Vol. III, pp 693-694.
(2) Chiu, N. Y.; Change, K. H. The Illustrated Medicinal Plants of Taiwan; Southern Materials Center Inc.: Taipei, 1992; Vol. 3, p 130.
(3) Hanumaiah, T.; Marshall, D. S.; Rao, B. K.; Rao, C. P.; Rao, G. S. R.; Rao, J. U. M.; Rao, K. V. J.; Thomson, R. H. Phytochemistry 1985, 24, 2373-2378.
(4) Rao, B. K.; Hanumaiah, T.; Rao, C. P.; Rao, G. S. R.; Rao, K. V. J .; Thomson, R. H. Phytochemistry 1983, 22, 2583-2585.
(5) Pepalla, S. B.; Jammula, S. R.; Rao, K. V. J.; Thomson, R. H. Phytochemistry 1992, 31, 2103-2104.
(6) J ammula, S. R.; Pepalla, S. B.; Telikepalli, H.; Rao, K. V.J.; Thomson, R. H. Phytochemi stry 1991, 30, 2427-2429.
(7) Hanumaiah, T.; Marshall, D. S.; Rao, B. K.; Rao, J. U. M.; Rao, K. V. J.; Thomson, R. H. Phytochemistry 1985, 24, 2669-2672.
(8) Hui, W. H.; Li, M. M. J . Chem. Soc., Perkin Trans. 1 1976, 23-30.
(9) Tinto, W. F.; Blair, L. C.; Alli, A.; Reynolds, W. F.; McLean, S. J. Nat. Prod. 1992, 55, 395-8.
(10) Dagne, E.; Steglich, W. Phytochemistry 1984, 23, 1729-1731.
(11) Simoneau, B.; Brassard, P. Tetrahedron 1988, 44, 1015-22.
(12) Goncalves, Maria de Lourdes S.; Mors, W. B. Phytochemistry 1981, 20, 1947-1950.
(13) Cohen, P. A.; Towers, G. H. N. Phytochemistry 1995, 40, 911-915.
(14) Shen, Z.; Theander. O. Phytochemistry 1985, 24, 155-158.
(15) Takahashi, H.; Li, S.; Harigaya, Y. Chem. Pharm. Bull. 1988, 36, 1877-1881.
(16) Banks, H. J.; Cameron, D. W.; Raverty, W. D. Aust. J . Chem. 1976, 29, 1509-1521.
(17) Kuo, Y. C.; Lin, C. Y.; Tsai, W. J.; Wu, C. L.; Chen, C. F.; Hiao, M. S. Cancer Invest. 1994, 12, 611-615.
NP000569D

[^0]: * To whom correspondence should be addressed. Tel: 886-2-28201999, ext. 8341. Fax: 886-2-28264276. E-mail: Iclin@cma23.nricm.edu.tw.

